Quasi-unital ∞–categories

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Yoneda Lemma for unital A ∞ - categories

Let C be the differential graded category of differential graded k-modules. We prove that the Yoneda A∞-functor Y : A op → A∞(A,C) is a full embedding for an arbitrary unital A∞-category A. Since A∞-algebras were introduced by Stasheff [Sta63, II] there existed a possibility to consider A∞-generalizations of categories. It did not happen until A∞-categories were encountered in studies of mirror...

متن کامل

Fe b 20 08 Quotients of unital A ∞ - categories

Assuming that B is a full A∞-subcategory of a unital A∞-category C we construct the quotient unital A∞-category D =‘C/B’. It represents the A u ∞-2-functor A 7→ A∞(C,A)modB, which associates with a given unital A∞-category A the A∞-category of unital A∞-functors C → A, whose restriction to B is contractible. Namely, there is a unital A∞-functor e : C → D such that the composition B →֒ C e −→ D i...

متن کامل

Rigidification of Quasi-categories

We give a new construction for rigidifying a quasi-category into a simplicial category, and prove that it is weakly equivalent to the rigidification given by Lurie. Our construction comes from the use of necklaces, which are simplicial sets obtained by stringing simplices together. As an application of these methods, we use our model to reprove some basic facts from [L] about the rigidification...

متن کامل

Mapping Spaces in Quasi-categories

We apply the Dwyer-Kan theory of homotopy function complexes in model categories to the study of mapping spaces in quasi-categories. Using this, together with our work on rigidification from [DS1], we give a streamlined proof of the Quillen equivalence between quasi-categories and simplicial categories. Some useful material about relative mapping spaces in quasi-categories is developed along th...

متن کامل

On the structure of simplicial categories associated to quasi - categories

The homotopy coherent nerve from simplicial categories to simplicial sets and its left adjoint C are important to the study of (∞, 1)-categories because they provide a means for comparing two models of their respective homotopy theories, giving a Quillen equivalence between the model structures for quasi-categories and simplicial categories. The functor C also gives a cofibrant replacement for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2015

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2015.15.2303